Machine Learning in Bioinformatics

(Same as Bioinformatics M226, Biomathematics M226, and Computer Science M226.) Lecture, four hours; outside study, eight hours. Enforced requisite: Computer Science 32 or Program in Computing 10C with grade of C- or better. Recommended: one course from Biostatistics 100A, 110A, Civil Engineering 110, Electrical and Computer Engineering 131A, Mathematics 170A, or Statistics 100A. Familiarity with probability, statistics, linear algebra, and algorithms expected. Designed for engineering students as well as students from biological sciences and medical school. Biology has become data-intensive science. Bottleneck in being able to make sense of biological processes has shifted from data generation to statistical models and inference algorithms that can analyze these datasets. Statistical machine learning provides important toolkit in this endeavor. Biological datasets offer new challenges to field of machine learning. Examination of statistical and computational aspects of machine learning techniques and their application to key biological questions. Letter grading.

Review Summary

Clarity
N/A
Organization
N/A
Time
N/A
Overall
N/A

Enrollment Progress

Enrollment data not available.

Course

Previously taught
17F

Previous Grades

Grade distributions not available.