Regression Analysis for Social Science

Lecture, three hours; discussion, one hour; field work, eight hours. Requisite: course 200A. Preparation: prior exposure to coding in R. Introduction to research design and regression analysis. Basic tools of statistical inference and application to practice of regression analysis. Emphasis on relationship of these statistical tools for drawing causal inferences; prediction and description also covered. Focus on principles of statistical inference, difference between design-based inference and model-based inference, identification versus estimation, building blocks of causal inference, characterization of regression model, diagnostics and extensions of regression model, threats to validity of our estimates. Students become comfortable coding in statistical programming language R. S/U or letter grading.

Review Summary

Clarity
N/A
Organization
N/A
Time
N/A
Overall
N/A

Enrollment Progress

Enrollment data not available.

Course

Instructor
Erin K. Hartman
Previously taught
18W

Previous Grades

Grade distributions not available.