Monte Carlo Methods for Optimization
Lecture, three hours; discussion, one hour. Requisite: course 202B. Monte Carlo methods and numerical integration. Importance and rejection sampling. Sequential importance sampling. Markov chain Monte Carlo (MCMC) sampling techniques, with emphasis on Gibbs samplers and Metropolis/Hastings. Simulated annealing. Exact sampling with coupling from past. Permutation testing and bootstrap confidence intervals. S/U or letter grading.
Review Summary
- Clarity
-
N/A
- Organization
-
N/A
- Time
-
N/A
- Overall
-
N/A
Course
Previous Grades
Grade distributions not available.