Monte Carlo Methods for Optimization

Lecture, three hours; discussion, one hour. Requisite: course 202B. Monte Carlo methods and numerical integration. Importance and rejection sampling. Sequential importance sampling. Markov chain Monte Carlo (MCMC) sampling techniques, with emphasis on Gibbs samplers and Metropolis/Hastings. Simulated annealing. Exact sampling with coupling from past. Permutation testing and bootstrap confidence intervals. S/U or letter grading.

Review Summary

Clarity
N/A
Organization
N/A
Time
N/A
Overall
N/A

Enrollment Progress

Enrollment data not available.

Course

Instructor
Song-Chun Zhu
Previously taught
18S 17S 16S 15S 14S 13S

Previous Grades

Grade distributions not available.